CONVOLUTIONAL NEURAL NETWORKS FOR CLASSIFICATION OF MALWARE ASSEMBLY CODE

Universitat de Lleida Escola Politècnica Superio

Blueliv.

Daniel Gibert, Javier Béjar, Carles Mateu, Jordi Planes, Daniel Solis, Ramon Vicens

OBJECTIVES

- Build a static classifier without relying on hand-crafted features defined by experts.
- Group malware into families based on their assembly language source code.
- Extract N-Gram like signatures with convolutional neural networks from malware's machine instructions.

DATA TRANSFORMATION

01110100 00111010 00001010 00100011 00001010 00100011 00100000 00100000 01010011 01001001 01000111 01010011 01000101 01000111 01010110 00100000 00101000 00110000 01111000 01100010 00101001 00100000 01100001 01110100	pop edx setz dl inc edx mov edi, edx	setz inc mov
00100000 00100000 01010011 01001001 01000111 01010011 01000101 01000111 01010110 00100000 00101000 00110000	inc edx	inc

CNN LAYERS DESCRIPTION

• Input

An assembly program is represented as a concatenation of mnemonics

 $x_{1:n} = x_1 \oplus x_2 \oplus \cdots \oplus x_n$

where *n* is the length of the program and $x_i \in \mathbb{R}^k$ corresponds to the i-th mnemonic in the program.

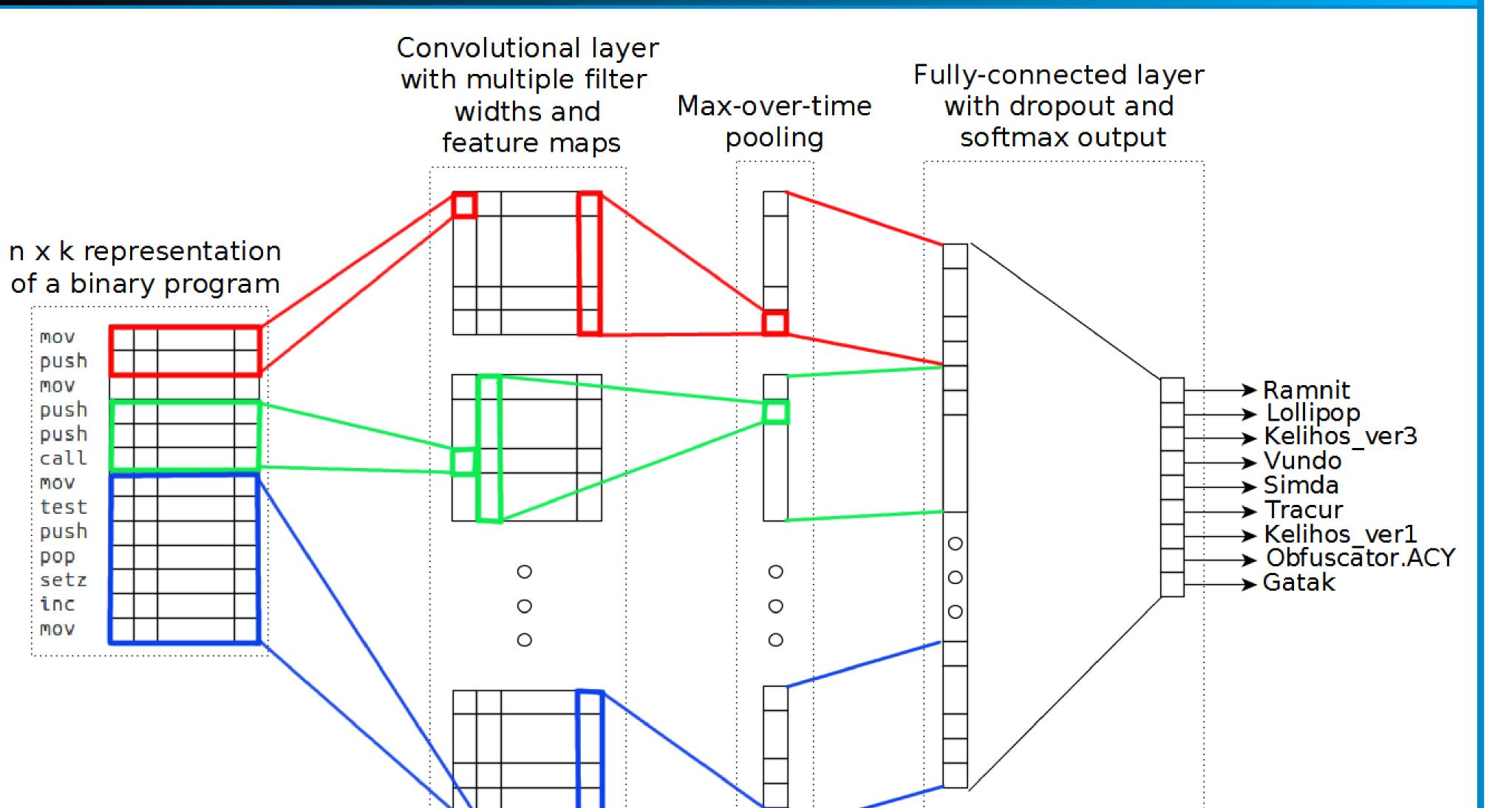
• Embedding

Every mnemonic is represented as a low-dimensional vector of real values (word embedding).

• Convolution

A convolution operation involves a filter $w \in \mathbb{R}^{hk}$ where h is the number of mnemonics to which is applied and k is the size of the word embedding. In particular, filters are applied to sequences containing from 2 to 7 mnemonics.

ARCHITECTURE



A feature c_i is generated from a window of mnemonics $x_{i:i+h-1}$ (it comprises all mnemonics between position *i* and *i* + h-1) and is defined as

 $c_i = f(w \cdot x_{i:i+h-1} + b),$

where f is a rectifier linear unit (ReLU) function and b the bias term.

• Max-Pooling

The maximum value $\hat{c} = \max\{c\}$ is taken as the feature corresponding to the filter by applying the max pooling operator over the feature map.

• Softmax layer

The extracted features are passed to a fully-connected softmax layer whose

N-GRAM COMPARISON

- An N-Gram is a contiguous sequence of N items from a given sequence of text.
- N-Gram like signatures have proved useful in classifying malware.
- The main limitation of standard N-Gram based methods is the exponential increase in the number of unique n-grams as n is increased.

Method	#features	RAM Usage	Extraction Time (in sec.)		
		(in GB)	Avg	Max	Min
1-Gram	977	1.39×10^{-6}	0.47	3.55	0.02
2-Gram	485809	9.72×10^{-4}	0.48	3.74	0.03
3-Gram	338608873	0.68	23.36	31.68	9.42
4-Gram	236010384481	420.02	_	-	_
CNN	384	1.54×10^{-6}	0.49	3.57	0.04
	•	•			•

CONCLUSION

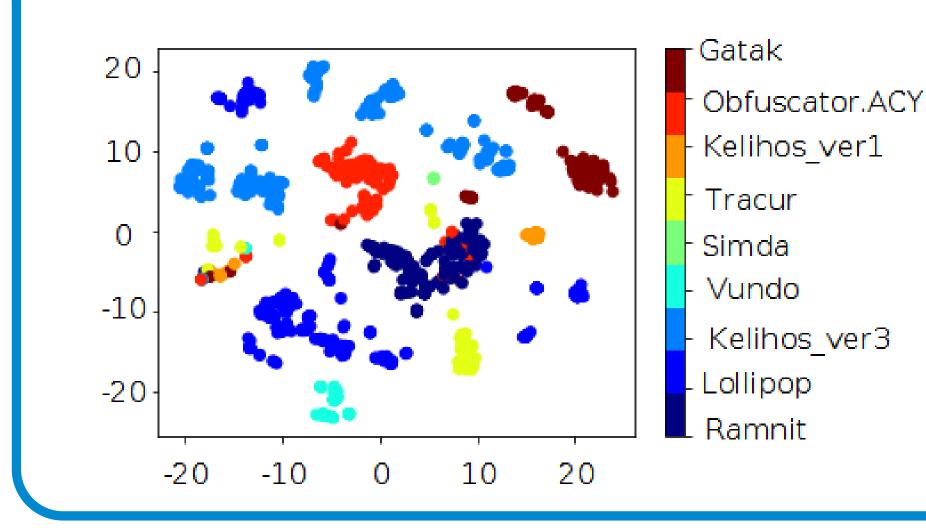
- End-to-end deep learning framework to automatically extract N-Gram like features and classify malicious software into families based on their assembly language source code.
- Efficient alternative to N-Grams.
- The N-Gram like features learned are highly discriminant and useful for clustering malware into groups.
- Greater predictive power in comparison to opcode-based approaches in the literature.
- Resilient to common obfuscation techniques such as code transposition and

output is the probability distribution over families.

Table 1: RAM requirements and feature extraction time considering a subset of 977 mnemonics.

function reordering.

T-SNE VISUALIZATION



RESULTS

Model	Training accuracy	Test Score	
CNN	0.9964	0.0244	
Winner's solution	0.9986	0.0028	
NFESF	1.0000	0.0063	
SMCMCF (4-Gram+VT)	0.9980	0.0259	
SMCMCF (4-Gram)	0.9930	0.0546	
STRAND	0.9859	0.0479	

Table 2: Comparison with state-of-the-art methods.

ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish MICINN Projects TIN2014-53234-C2-2-R, TIN2015-71799-C2-2-P and ENE2015-64117-C5-1-R, and by AGAUR DI-2016-091.

