
CONVOLUTIONAL NEURAL
NETWORKS FOR CLASSIFICATION

OF MALWARE ASSEMBLY CODE
Daniel Gibert, Javier Béjar, Carles Mateu, Jordi Planes,

Daniel Solis, Ramon Vicens

OBJECTIVES

• Build a static classifier without relying
on hand-crafted features defined by ex-
perts.

• Group malware into families based on
their assembly language source code.

• Extract N-Gram like signatures with
convolutional neural networks from
malware’s machine instructions.

DATA TRANSFORMATION

CNN LAYERS DESCRIPTION
• Input

An assembly program is represented as
a concatenation of mnemonics

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn

where n is the length of the program
and xi ∈ Rk corresponds to the i-th
mnemonic in the program.

• Embedding

Every mnemonic is represented as a
low-dimensional vector of real values
(word embedding).

• Convolution

A convolution operation involves a fil-
ter w ∈ Rhk where h is the number of
mnemonics to which is applied and k is
the size of the word embedding. In par-
ticular, filters are applied to sequences
containing from 2 to 7 mnemonics.

A feature ci is generated from a window
of mnemonics xi:i+h−1 (it comprises all
mnemonics between position i and i +
h− 1) and is defined as

ci = f(w · xi:i+h−1 + b),

where f is a rectifier linear unit (ReLU)
function and b the bias term.

• Max-Pooling

The maximum value ĉ = max{c} is
taken as the feature corresponding to the
filter by applying the max pooling oper-
ator over the feature map.

• Softmax layer

The extracted features are passed to
a fully-connected softmax layer whose
output is the probability distribution
over families.

ARCHITECTURE

T-SNE VISUALIZATION

N-GRAM COMPARISON
• An N-Gram is a contiguous sequence of

N items from a given sequence of text.

• N-Gram like signatures have proved
useful in classifying malware.

• The main limitation of standard N-Gram
based methods is the exponential in-
crease in the number of unique n-grams
as n is increased.

Method #features RAM Usage Extraction Time (in sec.)
(in GB) Avg Max Min

1-Gram 977 1.39 ×10−6 0.47 3.55 0.02
2-Gram 485809 9.72 ×10−4 0.48 3.74 0.03
3-Gram 338608873 0.68 23.36 31.68 9.42
4-Gram 236010384481 420.02 - - -

CNN 384 1.54 ×10−6 0.49 3.57 0.04

Table 1: RAM requirements and feature extraction
time considering a subset of 977 mnemonics.

RESULTS

Model Training accuracy Test Score
CNN 0.9964 0.0244
Winner’s solution 0.9986 0.0028
NFESF 1.0000 0.0063
SMCMCF (4-Gram+VT) 0.9980 0.0259
SMCMCF (4-Gram) 0.9930 0.0546
STRAND 0.9859 0.0479

Table 2: Comparison with state-of-the-art methods.

CONCLUSION
• End-to-end deep learning framework to

automatically extract N-Gram like fea-
tures and classify malicious software
into families based on their assembly
language source code.

• Efficient alternative to N-Grams.

• The N-Gram like features learned are
highly discriminant and useful for clus-
tering malware into groups.

• Greater predictive power in comparison
to opcode-based approaches in the liter-
ature.

• Resilient to common obfuscation tech-
niques such as code transposition and
function reordering.

ACKNOWLEDGEMENTS

This work has been partially funded by
the Spanish MICINN Projects TIN2014-53234-
C2-2-R, TIN2015-71799-C2-2-P and ENE2015-
64117-C5-1-R, and by AGAUR DI-2016-091.


