CONVOLUTIONAL NEURAL
NETWORKS FOR CLASSIFICATION
OF MAILWARE ASSEMBLY CODE

Daniel Gibert, Javier Béjar, Carles Mateu, Jordi Planes,
Daniel Solis, Ramon Vicens

UNIVERSITAT POLITECNICA
DE CATALUNYA

BARCELONATECH

Universitat de Lleida

+
X \lj/K Escola Politécnica Superior

6

Blueliv.

e Build a static classifier without relying it eds
91100116 91109961 H1110166 H1100961 91101166 HE100DEE th F—‘hh edi MoV
_ . _ 011080161 9111880106 211108010 91101111 611180106 AG100D60 pus ceDp DLI'Sh
on hand-crafted features defined by exX 91101966 91108961 A1110911 AE100IEE H1108910 H1100161 mow ebp, esp nov
erts 91100161 91101116 HE100DE6 H1100160 H1109161 H1110166 push esi push
P . 91100161 1108911 A1110166 A1100161 1109166 HE100DEE push edi nush
91100916 91111961 AE100HE6 A1110166 H11019668 H1100161 call getptd call
. L 7100960 1601918 H1100961 A1119116 H1108961 HE100DEE oy ecx. [eaxs70h] oV
® Group malware into families based on 91610916 91110161 91101116 ©1119166 51101961 H1101161 —) L —)'t .
91100161 PE109PEA H160A161 A1101116 P1119110 H1101961 tESE ; y 2 pﬁzh
. 91110916 91101111 /1101116 91101161 91108161 H1101116 pus
thElI' assembly language source COde' 91110160 PE111910 AEEO1016 PE109D11 AEEO1D16 AE100911 pop edx Pop
6100966 HE109PEA A1610D11 A16019E1 P160A111 H1E1ADIL setz d1 setz
. . . 91600161 91609111 A1610116 AE100IEG PE101968 HA11MDEE inc edx inc
o Fxtract N-Gram like Slgnatures with 91111966 51100316 PE101961 PE10APEA A110PBE1 A111P160 moV edi, edx mov
convolutional neural networks from Portable Executable File Assembly Language Mnemonics

malware’s machine instructions. Instructions
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A convolution operation involves a fil-
ter w € R"™ where h is the number of

mnemonics to which is applied and k is
the size of the word embedding. In par-
ticular, filters are applied to sequences
containing from 2 to 7 mnemonics.

CONCLUSION

End-to-end deep learning framework to
automatically extract N-Gram like fea-
tures and classify malicious software
into families based on their assembly
language source code.

N-GRAM COMPARISON

¢ An N-Gram is a contiguous sequence ot
N items from a given sequence of text.

A feature c; is generated from a window
of mnemonics x;.;4+n—1 (it comprises all
mnemonics between position ¢ and i +
h — 1) and is defined as

¢ = f(w-xii4n—1+D),

where f is a rectifier linear unit (ReLU)
function and b the bias term.

e N-Gram like signatures have proved
useful in classifying malware.

¢ The main limitation of standard N-Gram
based methods is the exponential in-
crease in the number of unique n-grams
as n is increased.

Efficient alternative to N-Grams.

e Max-Pooling The N-Gram like features learned are

highly discriminant and usetul for clus-
tering malware into groups.

A

The maximum value ¢ = max{c} is
taken as the feature corresponding to the

filter by applylng the max pOOhng Ope€r- Method #features | RAM Usage | Extraction Time (in sec.)

ator over the feature map. (inGB) | Avg | Max | Min
1-Gram 977 | 1.39 x10-° | 047 | 355 | 0.02
2-Gram 485809 | 9.72 x10~* | 048 | 3.74 | 0.03
3-Gram 338608873 0.68 | 23.36 | 31.68 | 9.42

4-Gram | 236010384481 420.02 | - ; - . .
CNN 384 | 154 x10-° | 049 | 357 0.04 Resilient to common obfuscation tech-

niques such as code transposition and
function reordering.

Greater predictive power in comparison
to opcode-based approaches in the liter-
ature.

e Softmax layer

The extracted features are passed to
a fully-connected softmax layer whose
output is the probability distribution
over families.

Table 1: RAM requirements and feature extraction
time considering a subset of 977 mnemonics.
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T-SNE VISUALIZATION RESULTS

batak Model Training accuracy | Test Score
Obfuscator ACY CNN 0.9964 0.0244
Winner’s solution 0.9986 0.0028
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Table 2: Comparison with state-of-the-art methods.
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